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Overview 

Timeline 
• Start: October 1, 2012 
• End:   Sept. 30, 2014 
• Percent complete:  50% 
 
 
Budget 
• FY13:  part of $4M 

Barriers 
• Calendar/cycle life of lithium-

ion cells 
 
 
 

 
Partners 
• Voltage Fade Team at Argonne  
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Project Objectives - Relevance 

Voltage fade in lithium-, manganese-rich (LMR-NMC) 
oxides reduces energy density of lithium-ion cells on 
calendar–life and cycle–life aging 
• Mitigating voltage fade will enable the use of these high–energy 

composite materials {xLi2MnO3 •(1-x)LiMO2 (M=Ni, Mn, Co)} for 
PHEV and EV applications 

Milestones 
• Establish database to organize information from many partners 

      January 2013 
• Determine effect of composition and phase distribution on voltage 

fade.  Use data to select an LMR-NMC oxide with minimal voltage 
fade      September 2013 
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Approach 
 Use combinatorial synthetic methods to identify factors that contribute to 

voltage fade as part of a team effort 

Characterization Synthesis 

Diagnostics and  
Modeling 

Theory 
2
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Technical Accomplishments and Progress 

 Established a user-friendly database for the collection and organization of 
information generated by team members (met milestone) 

 Database is Windows-based and open for use 
 
 



Combinatorial Synthesis – Progress 
Characterization 

Group Li Ni Co Mn Group Li Ni Co Mn 
1 1~1.6 0.15 0 0.85 12 1~1.6 0.25 0.2 0.55 
2 1~1.6 0.15 0.05 0.85 13 1~1.6 0.3 0 0.7 
3 1~1.6 0.15 0.1 0.75 14 1~1.6 0.3 0.05 0.65 
4 1~1.6 0.2 0 0.8 15 1~1.6 0.3 0.1 0.6 
5 1~1.6 0.2 0.05 0.75 16 1~1.6 0.3 0.15 0.55 
6 1~1.6 0.2 0.1 0.7 17 1~1.6 0.35 0 0.65 
7 1~1.6 0.2 0.15 0.65 18 1~1.6 0.35 0.05 0.6 
8 1~1.6 0.25 0 0.75 19 1~1.6 0.35 0.1 0.55 
9 1~1.6 0.25 0.05 0.7 20 1~1.6 0.4 0 0.6 
10 1~1.6 0.25 0.1 0.65 21 1~1.6 0.4 0.05 0.55 
11 1~1.6 0.25 0.15 0.6           

6 

 147 compositions were prepared by sol-gel methods, spanning the low-Co portion 
of the Li2MnO3-LiCoO2-LiNiO2-LiMnO2 phase diagram 

 In each group, the Li stoichiometry varied from 1 to 1.6 in steps of 0.1, labeled A, 
B,…, and G, respectively 

 Each composition was characterized by XRD, elemental analysis, microscopy 
 Electrochemical performance of selected compositions was studied in half-cells 

using a standard test protocol at room temperature 



X-ray Diffraction Patterns of Oxides Are Very 
Similar 

 XRD patterns for LiMO2 (R-3m), Li2MnO3 (C2/m), and spinel (Fd3m) phases are 
very similar to each other, but can be distinguished by using synchrotron X-rays 
with their higher spatial resolution 
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XRD Results Indicate That the Phase Relationships 
Can Be Complex. 1 

 XRD of low-Li materials 
showed evidence of spinel 
and/or excess Li2MnO3 

 Complex pattern around 
2θ~3.0o is consistent with 
presence of multiple phases 
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XRD Results Indicate That the Phase Relationships 
Can Be Complex. 2 

 Single peak at 2θ~3.0o is 
consistent with the 
presence of a composite 
phase 
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Phase Distribution Is Sensitive to Li Concentration 

 Nominal transition metal (M in LiMO2) ratio: Ni=0.40; Mn=0.55; Co=0.05 
 The reflection of the spinel (Fd3m) impurity was reduced; and the reflections 

due to Li2MnO3 (C2/m) and LiMO2 (R-3m) were broadened, shifted, and, 
eventually, merged into each other. The data may indicate that interphase of 
domains of Li2MnO3 (C2/m) and LiMO2 (R-3m) exist in the composite material 
as the domain sizes are reduced and become more integrated 
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Performance 
Effect of Li Stoichiometry on Capacity 

 There were two distinguishable regions. The materials with lower capacities also 
contain less Co 
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Effect of Co Stoichiometry on Capacity 

 Compositions with a high Co concentration tend to have higher capacities 
 
 
 
 
 
 
 
 
 
 
 
 

» TM=(Ni+Co+Mn) and equals 1 
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High-voltage Capacity Is Sensitive To Charge Rate 

 No marked effect on capacity below 4.5 V 
 Capacity between 4.5 and 4.7 V is sensitive to rate 
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 Six-fold increase in capacity between 4.5 and 4.7 V at lower rate 
– Co concentration may effect conductivity and/or the activation process 

 
 
 
 
 
 
 
 
 
 
 
 
 



Study the Relationship of Capacity to the Activation 
Process 

Method: 
 Activation: Li2MnO3 cathodes were charged to 4.8 V and then discharged to 2 V 

with different current, which are 15 mA/g (C/10),  7.5 mA/g (C/20), 3 mA/g 
(C/50), and at different temperature (RT, 40oC). 

 Then, the capacity of activated Li2MnO3 was measured by the same voltage 
window, 2-4.7 V, with the same current, 15 mA/g, and at room temperature. 

Note: All the capacity reported here is the "available" lithium sites after 
the activation.  During the initial activation, theoretically, no capacity is 
measured below 4.5 V; the activation process above 4.5 V is needed for 
every "available" site.  



 2nd_chg: the 2nd charge capacity, etc. The 1st is the 2-4.8V activation cycle. 
 The capacities were plotted versus to charge capacity of activation cycle. 

The Capacity Increases With The Degree of 
Activation 

 ~ 400 mAh/g energy density was taken with 3 mA/g (C/50) charge current. 
 The process is kinetically controlled, speeded up by raised temperature. 
 The coulombic capacity of Li2MnO3 in the following cycles mainly depends on 

the capacity of the charging in the activation process.  

However, Li2MnO3 activated at 
40oC with C/50 shows lower 
capacity then one at 40oC with 
C/20 and one at RT with C/50  



 Higher capacity can be reached with slower charging rate. However, the 
charging times increase irreversible capacity loss (ICL) 

 ~200 mAh/g ICL at 40oC with C/50 decreases capacity in the following 
cycles 

Irreversible Capacity Loss Increases With Charging 
Time 



Capacity of Li2MnO3 Increases With Degree of 
Activation 

 Considering the various ICL in different activation process, it is better to plot the 
capacity of Li2MnO3 to the capacity of the discharging in the activation process 

 The columbic capacity of Li2MnO3 in the following cycles shows linear relationship 
to the capacity of the discharging in the activation process 
 



iR-Corrected Average Voltage is Used To Track Voltage Fade 

1. Determine average charge and discharge voltages (Avg. V=Wh/Ah) 
2. Obtain average charge and discharge resistances from the interrupts 
3. Calculate resistance-corrected average voltages (Avg. V ±  iR) 

avg. voltages 

charge 

discharge 
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Composition Affects Voltage Fade 
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Kinetics of Average Voltage Fade 
 The decline in average voltage data were fit to a paralinear kinetic rate law1 

 
 
 

where x is the change in relative average voltage, Kp and Kl are the parabolic and 
linear rate constants, respectively, and t is time 
 In general, the regression       

coefficients, r2, were             
high, > 0.99 
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x = 
Kp

Kl

ln
Kp

Kp – Kl(x-Klt)
x = 

Kp

Kl

ln
Kp

Kp – Kl(x-Klt)

1E. W. Haycock, J. Electrochem. Soc., 106 
(1959) 771–775 
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Use Methods of Scheffé To Model Dependence of 
Kinetic Parameters On Composition 
 Limit modeling to those compositions that crystalize in the R-3m space group 

(layered-layered materials) 
 Kp and Kl data were treated by multiple linear regression analysis using the cubic 

simplex equation for four-component mixtures, based on the work of Scheffé2,3 
 

Y=a1x1 + a2x2 + a3x3 + a4x4 + a12x1x2 + a13x1x3 + a14x1x4 + a23x2x3 + a24x2x4 + a34x3x4 + a123x1x2x3 + 
a124x1x2x4 + a134x1x3x4 + a234x2x3x4 + b12(x1 - x2) + b13(x1 – x3) + b14(x1 – x4) + b23(x2 – x3) + b24(x2 – x4) 
+ b34(x3 – x4), where xj is the mole fraction of the jth component 

 
 The candidate fits must contain the x1, x2, x3 and x4 terms and were limited to 11 

terms because dataset contained 20 entries 
 For each kinetic parameter, examined 26,333 combinations of terms seeking an 

equation which 
– Used the fewest number of terms 
– Had high value of r2, typically > 0.98 
– Had lowest RMS error 
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2H. Scheffé, J. Royal Statistical Soc. (B) 20 (1958) 344. 
3H. Scheffé, J. Royal Statistical Soc. (B) 25 (1963) 235. 
 



Results From Simplex Modeling Produced Good Fits 

 11-term equations were obtained for Kp and Kl which met the selection criteria 
 
Kp =a1x1 + a2x2 + a3x3 + a4x4 + a14x1x4 + a24x2x4 + a124x1x2x4 + a134x1x3x4 + b12(x1 - x2) +  
b14(x1 – x4) + b34(x3 – x4); r2 =0.99; RMS error=3.9% 
 
Kl =a1x1 + a2x2 + a3x3 + a4x4 + a12x1x2 + a13x1x3 + a23x2x3 + a134x1x3x4 + b12(x1 - x2) + b14(x1 
– x4) + b23(x2 – x3); r2 =0.99; RMS error=5.4%  

 
 Use model to guide selection of compositions to make and to characterize 
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There Are Indications of Compositional Regions For 
Low Values of the Kinetic Parameters --Kl 
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• Low values of the kinetic constants are desired to slow the voltage fade process 



There Are Indications of Compositional Regions For 
Low Values of the Kinetic Parameters -- KP 
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Work in Progress/Future Work 

 Continue to characterize compositions in region of interest 
 Characterize compositions that the models suggest would possess low 

values of the kinetic parameters 
 Use these results to fine-tune the models 

 
Summary 

LMR-NMC phase system, in general, 
- .. has complex phase relationships 
- .. shows that the amount of Co on the transition metal site affects Li2MnO3 

activation 
- .. displays nonlinear kinetics for the voltage fade process 
- .. is amenable to modeling of the kinetics of voltage fade 
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